drop_na()
drops rows that contain NA
values in selected columns.
library(tidyr)library(dplyr)
df <- tibble(id = c(1, 2, NA, 4), first_name = c("Alice", "Bob", NA, "David"), last_name = c("Smith", "Johnson", NA, "Miller"), age = c(25, NA, 35, 40))df
Output:
# A tibble: 4 × 4
id first_name last_name age
<dbl> <chr> <chr> <dbl>
1 1 Alice Smith 25
2 2 Bob Johnson NA
3 NA <NA> <NA> 35
4 4 David Miller 40
Remove rows containing missing values NA
. Only rows not containing NA
are retained in the output.
Output:
# A tibble: 2 × 4
id first_name last_name age
<dbl> <chr> <chr> <dbl>
1 1 Alice Smith 25
2 4 David Miller 40
Remove rows that contain NA
values in the id
and first_name
column.
df %>% drop_na(id, first_name)
Output:
# A tibble: 3 × 4
id first_name last_name age
<dbl> <chr> <chr> <dbl>
1 1 Alice Smith 25
2 2 Bob Johnson NA
3 4 David Miller 40
Selection helpers can be used to conveniently select a block of columns. E.g., here we remove rows that contain NA
values in numeric columns.
df %>% drop_na(where(is.numeric))
Output:
# A tibble: 2 × 4
id first_name last_name age
<dbl> <chr> <chr> <dbl>
1 1 Alice Smith 25
2 4 David Miller 40